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AbstmcI,-A new srrbgridding technique for finite differ-

ence (FD) methods is presented. The method is based on

the integral form of Maxwell’s equations combined with

a simple yet efficient orthogonalization technique for the

discretization geometry at subgrid interfaces. No addi-

tional correction factors or interpolations are required.

This leads to spurious-mode free solutions when applied

to FD approximations of eigenvalue problems and to sta-

ble difference formulations when applied to the finite dif-

ference time-domain (FD-TD) method. The high effi-

ciency of the subgridding technique is demonstrated by

the FD-TD analysis of an inter-digital filter with circular

posts.

I. INTRODUCTION

D UE to its high flexibility, the firrite difference time

domain (FD-TD) method is well established for

solving a wide variety of electromagnetic problems [1]

- [12]. Based on Yee’s cell [I], combined with graded

mesh techniques [11], [12], a localized accurate modeling

of microwave structures with non-rectangular sections or

portions of high field variations leads often to an unnec-

essarily fine mesh discretization in homogeneous areas

of low field gradients, due to the topology of the grid.

Moreover, in many cases the stable time step depends on

the smallest cell used, and still rather high memory and

computation time requirements are usually necessary.

A more universal approach is to use locally refined

meshes [2], [3], [6]. The reported subgrid FD-TD

algorithms, however, require additional interpolation

schemes at the grid-interfaces. Depending on the type of

interpolation, this may violate the divergence relations,

which often results in unstable formulations.

In this paper, we introduce a simple yet efficient, or-

thogonalization technique for the discretizat,ion geolrl-

etry at the g~i(i-interfaces. .1 FD-TD formulation for

generalized coorxiiuates is applicable which does not re-

quire any additional interpolation. Ovm nlunerical tests

have shown that the stability of this nwthod depends on

a C(J~lr~~llt-Friccl~iclls-Lewy (CFL) t~pc stability concii-

tion [14] which includes the deformatio]l of a cell. ThP

time step is localized an(i matched to the local CFI,-

condition in cach gricl-level. The discvt:tiz:~ti(>ll of the

tjinle {litfercnt iatio~l on grid illtmfacvs is lx’lformecl such

that tile divergcllcc (i.e. the surfatc iutcgratio,l almq+

t,he cell surface over all contributions to the normal field

componf!nt,s on the cell faces) vanishes after one time

step in th(! gricl-level containing the cell. This leads to a

general, efficient and stable subgridding technique. The

example of an inter-digital filter where the filter charac-

teristics are highly sensitive to the adequate discretiza-

tion of the capacitive gap sections verifies the proposed

method by good agreement with measurements.
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Fig. 1. 2D sabgrid generation of a FD-TD domain wit, b the

contour Jr. (a) R,ecarsiye allocated cells (solid liues). daal

grid (clashed lines). (b) Orthogoaalized main grid (solid lines),
dual grid (dashed lines)

II. TR130RY

Grid generation–Based on a 2 : 1 cdl ratio for the

subgrids L, a recursive gri(i-generation procedure is uti-

lized ((f. Figs. 1). .i given ol),ject (for instance a domain

bouudcd by a contour fir (f. Fig. la) is first subdi~idrd

* Fnrt,l)cr r(, firlc!melll is st, r-aigllt forw:u(l I),y illsc[ tirlg sill) grids III(O

sub; ri(ls
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1 ‘ ‘1 1 S11(11 tllikl, illl COI’ll(!I’S of tll(!illt,[j f:elis (If a lar~f!st (v(

cell ;LK(! still ilmi(l(! the {Jl),j[!ct. In orx](!r to (iiscretific t,hc

r(:mainin~ spar:(:, I)oun(le(l by tll(! Ol)j(!ctl alk(l the l(!VC1 1

(:(:11s, 1,110 sanlc l)roccdurc is rqeatc(l Ilsing cells of tlhc

next, firlcr I(!vcl 1 + 1, llntjil the rnaxirnuln spc(:ified lcv(!l

1.,,, is obtjain(~(l.

.Af’tcr this cell allocation proccdllrc has been pcr-

f(xrncd for t,h(! spccific(l ot)jcctjs) a ,slzbgrid boundary

corlditim] is al)plicd. This condition forms each CC1l of’

level 1 to have neighbor cells in the lCXVIS 1 – 1, 1 and

1 + 1 only. I?rorn the allocated cells, two different, grids

are derived, which are referred to as the main and the

dual grid. The main grid is defined by the corners, and

the dual grid is defined by the centers of the allocated

cells (Fig. la). The dual mesh, as defined above, in-

volves quadrangular and triangular cells.

A direct, discretization of the integral form of

Max~vell’s equations for non-orthogonal grids (for ex-

ample according to [8]) applied to this scheme usually

requires interpolations of components which are not de-

fined in the subgrid geometry. Therefore, a new tech-

nique is introduced where the main grid is adequately

orthogonalized against the dual grid (Fig. lb). The re-

sult of this orthogonalization procedure is shown in Fig.

1(b). In the three dimensional (3D) case, the orthog-

onalization of the main and the dual grid is performed

analogously, as shown in Fig. 2, which depicts a general

subgrid interface. Here, a nonlinear equation has to be

solved for the coordinates of the orthogonalized main

grid.
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Fig. 2. 311 sobgrici gelicratior] of a FD-TD clornain. Dual grid

Ievcl L (dash-dotted lines), deal grid level L+ 1 (dashed lines),

orl hogonalizrxl rnaiu gI-id (so!id lines)

3D Finite-Difference-Equations – The main grid
of’ tllc3D subgrid discrctizatiou (iefines local basis-

systcllls (i,~. tij, &). Tlw electric and the magnetic fields

arc rcprvscntcd I)y corltr:i-f~:lri:llltj colllponentjs ‘ c’, ‘ //’,

i = 1 . ..3 :IS IUI1OIOW US,where the sul)(!rscril)t, ‘ (lcsig-

1“ 1 0<1 < 1,,, Of tll(! (:(!11, r(!liit(:d t(} tll(!IMtwi t IC ~md lcvc ,

(wrnl)oncnt,, and /.,, is the rnaxilnal (fin(!stj) grid lcvc].

The time incr(!rncnt in the grid of level 1 is 2’rrI ‘~llt,

~vllcrc At is t,hc tirn(! incrcmcrlt in level 1,1,,. The clcct,ri(:

and the magnetic fic:l(l-(:(}rrll) (Jrl(:rltjs in lf!vcl 1 arc dcfinc(l

at tjlm time 2~7’7“nAt a,n(l 2“7” (71+0 .5)Ai, rf:spcctivcly.

IVit,h the index control olmrat,ors

dl ,/, = ()int, A‘2/,,, -/ ‘“ (1)

““= (ir’’( &2’’”-’ ‘2)

u’here d denotes the t,irne and spac(+ discretizirtion irl-

clices n, i, j and k, and into is the integer part of the

argument, the updating equation for the elect, ri[;-field

component 1ei ~’””. reads
%1%,,rI , ~1,,

–1

dl ~
2(,, jl,, kl k ((Z2;,,i ~,,j /.,,k x r53-

z(, , J),, ki, ~))
[ ( ‘e ;, ~ j,,, k,. kEOET ;/,, j,., ~I,k _Lelnl, n-l

?,,, ,j,,, k,, ~ At2’1-’ 2 )

where .9%i = di di is the i-th diagonal element of the

metric tensor at the designated position, and o. p. q, r

are the grid-levels of the corresponding 11-component, s,

The grid boundary condition leads to 1 – 1 s o. p. q, r

< 1, that means, each level l-component of the electric

field is determined by components of the magnetic field

from the same or the next lowe~ level. The remainiug

updating expressions ‘ ez .’”’~ and 1e3 ‘z’” of!,,, ,],,, kl , t,,, J,; i,,

t,he elcct,ric field are obtaiucd l~y irlcl~;x-perl~lllt<iti[>r~ in

(3).

The updatins equation for tile magnetic field compo-

nent, ‘}/,1 ‘~””~ . is given by
L),, Jl, > ~1,,

——
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with O, p, q, r being the levels of the components of the

electric fields where the grid boundary condition ensures

l+l~o, p,qj’r’>l.

For a discretization containing cells of the maximal

level 1,,,, a
1,.+1 y difieren+ ~ and ,1

total number of ~1=1 ,,

updated computations have to be performed to proceed

one step ‘At = At21*1 in time in the coarsest grid (of

level O). This update sequence is repeated after 2“Iz time

steps.

In contrast to the spatial and/or temporal interpola-

tion techniques hitherto reported, the generalized sub-

grid FD-TD method presented by the equations (3), (4),

(1), (2), satisfies implicitly for each cell in both the main

and the dual grid the divergence relation. .hralogous to

the standard non subgrid FD-TD formulation. the inte-

gral contribution of each vertex of the cell appears twice

but with different signs so that the sum is zero. This

j-ields for all investigated cases stable results as has been

tested even at highly resonant structures, e.g. dielectric

resonator filters: ~rith up to several millions of time it-

erations.

The time step in each grid level 1 is limited by the

CFL condition for the nouorthogonal FD-TD nlct,bod

‘ 4nin
‘At =

co
(5)

~rhere ‘ d,,,i,l represents the smallcstj slope in the level 1

[14], i.e. the smallest, distance between a cell coruer of

the main grid to the dual grid uode inside the cell.

The 313 suljgri(l (Iis{:r(’liziltiorl is illllStliLt(!(l ill Fig.

4. 6(! V(!I”ai FD-TD :lIlidySiS riIlls lIav(: sILOWI1 1[1:11 t,il(;

S-matrix of the stlrllcture is highly s(!nsillivc to tjllc ad(:-

quatc field r(:r)r(:s(:rllftit,iorl ill th(: carx~cil)ivc gal)s of tlh(!

Cylin(lricid I)ost)s. Thcr(!fi)rc’. a very Iligh (lis(lc!tiz;lt4i011

level in these gal)s (Fig. 4) Ims tlo ix) chosen ill ordw to

ol)tjain conw!rgcrlt results.
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Fig. 3. Geometry of the investigated inter-digital filter. ( Dimen-

sions in mm. )

Fig. 5 shows the S-parameters computed by the new

FD-TD subgrid method compared to measurements.

Good agreement may be stated. In this simulation, the

matrix-pencil technique [13], [10], [9] has been success-

fully applied to the low-pass-filtered time-domain sig-

nals in order to reduce the t,otal number of FD-TD time

steps and to obt,ain frecluenc;y-dol~l~lill data with arl>i-

trary resolution.

IV. CO~CLUSIOiX

.A new generalized finite-difference tirne-dornain sul)-

grid (FD-TDS) tcchuique has been presented. The

method is based on an ortklogorlalizz~ tiorl of the dis-

Cret, izat, ion g(~omet,ry and mscs the intlegral-forrn Of

Maxwell’s curl equations. At the jyid interfaces no sp(:.

cial cases and no additional interpolations have to be

consi(lcrcd. .lnalogous to the st,:~rl(l:lr(i-FD-T D-nlc:t,llcJ(l,

the divcrpyucr condil,ioms il[(; satisfied in (!ach cell of

Imtll the ulaill au(l 111(’ (III:J1 gri(l. This yicl(ls st,al)l(
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Fig. 4. Subgrid discretization of the investigated inter-digital
filter
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