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Abstract— A new subgridding technique for finite differ-
ence (FD) methods is presented. The method is based on
the integral form of Maxwell’s equations combined with
a simple yet efficient orthogonalization technique for the
discretization geometry at subgrid interfaces. No addi-
tional correction factors or interpolations are required.
This leads to spurious-mode free solutions when applied
to FD approximations of eigenvalue problems and to sta-
ble difference formulations when applied to the finite dif-
ference time-domain (FD-TD) method. The high effi-
ciency of the subgridding technique is demonstrated by
the FD-TD analysis of an inter-digital filter with circular
posts.

I. INTRODUCTION

UE to its high flexibility, the finite difference time

domain (FD-TD) method is well established for
solving a wide variety of electromagnetic problems [1]
- [12]. Based on Yee’s cell [1], combined with graded
mesh techniques [11], [12], a localized accurate modeling
of microwave structures with non-rectangular sections or
portions of high field variations leads often to an unnec-
essarily fine mesh discretization in homogeneous areas
of low field gradients, due to the topology of the grid.
Moreover, in many cases the stable time step depends on
the smallest cell used, and still rather high memory and
computation time requirements are usually necessary.

A more universal approach is to use locally refined
meshes [2], [3], [6]. The reported subgrid FD-TD
algorithms, however, require additional interpolation
schemes at the grid-interfaces. Depending on the type of
interpolation, this may violate the divergence relations,
which often results in unstable formulations.

In this paper, we introduce a simple yet efficient or-
thogonalization technique for the discretization geom-
etry at the grid-interfaces. A FD-TD formulation for
generalized coordinates is applicable which does not re-
quire any additional interpolation. Own numerical tests
have shown that the stability of this method depends on
a Courant-Friedrvichs-Lewy (CFL) type stability condi-
tion [14] which includes the deformation of a cell. The
time step is localized and matched to the local CFL-
condition in each grid-level. The discretization of the
tie differentiation on grid interfaces is performed such
that the divergence (i.e. the surface integration along

the cell surface over all contributions to the normal field
components on the cell faces) vanishes after one time
step in the grid-level containing the cell. This leads to a
general, efficient and stable subgridding technique. The
example of an inter-digital filter where the filter charac-
teristics are highly sensitive to the adequate discretiza-
tion of the capacitive gap sections verifies the proposed
method by good agreement with measurements.
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Fig. 1. 2D subgrid generation of a FD-TD domain with the

contour 6I". (a) Recursive allocated cells (solid lines), dual
grid {(dashed lines). (b) Orthogonalized main grid (solid lines),
dual grid (dashed lines)

II. THEORY

Grid generation—Based on a 2 : 1 cell ratio for the
subgridst, a recursive grid-generation procedure is uti-
lized (cf. Figs. 1). A given object (for instance a domain
bounded by a contour I cf. Fig. 1la) is first subdivided

Further refinement is straightforward by inserting subgrids into
subgrids
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into cells of a largest level [ such that all corners of the
cell are still inside the object. In order to discretize the
remaining space, bounded by the object and the level [
cells, the same procedure is repeated using cells of the
next, finer level [+ 1, until the maximum specified level
L, 18 obtained.

After this cell allocation procedure has been per-
formed for the specified objects, a subgrid boundary-
condition is applied. This condition forces each cell of
level [ to have neighbor cells in the levels I — 1, [ and
[ + 1 only. From the allocated cells, two different. grids
are derived, which are referred to as the main and the
dual grid. The main grid is defined by the corners, and
the dual grid is defined by the centers of the allocated
cells (Fig. la). The dual mesh, as defined above, in-
volves quadrangular and triangular cells.

A direct discretization of the integral form of
Maxwell’s equations for non-orthogonal grids (for ex-
ample according to [8]) applied to this scheme usually
requires interpolations of components which are not de-
fined in the subgrid geometry. Therefore, a new tech-
nique is introduced where the main grid is adequately
orthogonalized against the dual grid (Fig. 1b). The re-
sult of this orthogonalization procedure is shown in Fig.
1(b). In the three dimensional (3D) case, the orthog-

onalization of the main and the dual grid is performed
analogously, as shown in Fig. 2, which depicts a general
subgrid interface. Here, a nonlinear equation has to be
solved for the coordinates of the orthogonalized main
grid.
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Fig. 2. 3D subgrid generation of a FD-TD domain. Dual grid
level | {dash-dotted lines), dual grid level { + 1 (dashed lines),
orthogonalized main grid (solid lines)

3D Finite-Difference-Equations — The main grid
of the 3D subgrid discretization defines local basis-
svstems (@) . dq, @3). The electric and the magne ti( fields
are represented by contra-variant components ‘ef, fht
i = 1...3 as wnknowns, where the superscript * (lcsu,,—

nates the grid level, 0 < 1 < 1, of the cell, related to the
component, and [, is the maximal (finest) grid level.
The time increment in the grid of level [ is 2=—1At,
where At is the time increment in level [,,,. The electric
and the magnetic ficld-components in level [ are defined
at the time 202 ~fn At and 25~ (n+0.5) At, respectively.
With the index control operators
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where d denotes the time and space discretization in-
dices n, i, j and k, and int() is the integer part of the
argumnent, the updating equation for the electric-field
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where g;; = @; - @; is the i-th diagonal element of the
metric tensor at the designated position, and o. p. ¢, r
are the grid-levels of the corresponding h-components.
The grid boundary condition leads to { -1 < 0. p. ¢, 7
< [, that means, each level I-component of the electric
field is determined by components of the magnetic field
from the same or the next lower level. The remaining

2 Nin o .
updating expressions ‘e? " and ‘fed ™" of
i i ki i Jig ke

the electric field are obtained by index-permutation in
(3)-

The updating equation for the magnetic field compo-

Ty o - .
nent ‘pt " is given by
i Jl 3N
[] | _
B g ke
Holty RN Fik + T RN, o
Ap2lee—t 2
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with o, p, ¢, r being the levels of the components of the
electric fields where the grid boundary condition ensures
l+1>0,p,q,r>1.

For a discretization containing cells of the maximal
level {,,, a total number of Zﬁ;fl 2! different e and h
updated computations have to be performed to proceed
one step At = At2!= in time in the coarsest grid (of
level 0). This update sequence is repeated after 2/~ time
steps.

In contrast to the spatial and/or temporal interpola-
tion techniques hitherto reported, the generalized sub-
grid FD-TD method presented by the equations (3), (4),
(1), (2), satisfies implicitly for each cell in both the main
and the dual grid the divergence relation. Analogous to
the standard non subgrid FD-TD formulation, the inte-
gral contribution of each vertex of the cell appears twice
but with different signs so that the sum is zero. This
yields for all investigated cases stable results as has been
tested even at highly resonant structures, e.g. dielectric
resonator filters, with up to several millions of time it-
erations.

The time step in each grid level [ is limited by the
CFL condition for the nonorthogonal FD-TD method

I
dinin
—_— )
o (5)

At =

where ‘dy;, represents the smallest slope in the level |
[14], i.e. the smallest distance between a cell corner of
the main grid to the dual grid node inside the cell.

III. NUMERICAL RESULTS

The 3D FD-TD subgrid formulation presented above
has been tested by the analysis of an inter-digital-filter
with rounded posts. Fig. 3 shows a sketch of the struc-
ture togethier with the geometrical data.

The 3D subgrid discretization is illustrated in Fig.
4. Several FD-TD analysis runs have shown that the
S-matrix of the structure is highly sensitive to the ade-
quate field representation in the capacitive gaps of the
cylindrical posts. Therefore. a very high discretization
level in these gaps (Fig. 4) has to he chosen in order to
obtain convergent results.
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Tig. 3. Geometry of the investigated inter-digital filter. ( Dimen-
sions in mm.)

Fig. 5 shows the S-parameters computed by the new
FD-TD subgrid method compared to measurements.
Good agreement may be stated. In this simulation, the
matrix-pencil technique [13], {10], {9] has been success-
fully applied to the low-pass-filtered time-domain sig-
nals in order to reduce the total number of FD-TD time
steps and to obtain frequency-domain data with arbi-
trary resolution.

IV. CONCLUSION

A new generalized finite-difference time-domain sub-
grid (FD-TDS) technique has been presented. The
method is based on an orthogonalization of the dis-
cretization geometry and uses the integral-form of
Maxwell’s curl equations. At the grid interfaces no spe-
cial cases and no additional interpolations have to be
considered. Analogous to the standard-FD-TD-method,
the divergence conditions are satisfied in each cell of
both the main and the dual grid. This yields stable
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results in all investigated cases.
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Fig. 4. Subgrid discretization of the investigated inter-digital
filter
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Fig. 5. S-parameters of the inter-digital filter (Fig. 4). Theory
and measurements.
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